Nonparametric Neural Network Model Based on Rough-Fuzzy Membership Function for Classification of Remotely Sensed Images
نویسندگان
چکیده
A nonparametric neural network model based on Rough-Fuzzy Membership function, multilayer perceptron, and back-propagation algorithm is described. The described model is capable to deal with rough uncertainty as well as fuzzy uncertainty associated with classification of remotely sensed multi-spectral images. The input vector consists of membership values to linguistic properties while the output vector is defined in terms of rough fuzzy class membership values. This allows efficient modeling of indiscernibility and fuzziness between patterns by appropriate weights being assigned to the backpropagated errors depending upon the Rough-Fuzzy Membership values at the corresponding outputs. The effectiveness of the model is demonstrated on classification problem of IRS-P6 LISS IV images of Allahabad area. The results are compared with statistical (Minimum Distance), conventional MLP, and FMLP models.
منابع مشابه
Review of soft classification approaches on satellite Image and accuracy assessment
Image classification is a process that may be affected by many factors. This paper is in regard of the classification techniques used for image processing and analysis using the concept of Fuzzy and Possibilities techniques, applied in each pixel of false-color satellite image By this paper examine classification approaches and the technique used for improving classification accuracy. By the in...
متن کاملTexture Based Land Cover Classification Algorithm Using Gabor Wavelet and Anfis Classifier
Texture features play a predominant role in land cover classification of remotely sensed images. In this study, for extracting texture features from data intensive remotely sensed image, Gabor wavelet has been used. Gabor wavelet transform filters frequency components of an image through decomposition and produces useful features. For classification of fuzzy land cover patterns in the remotely ...
متن کاملObject-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کاملA novel approach to neuro-fuzzy classification
A new model for neuro-fuzzy (NF) classification systems is proposed. The motivation is to utilize the feature-wise degree of belonging of patterns to all classes that are obtained through a fuzzification process. A fuzzification process generates a membership matrix having total number of elements equal to the product of the number of features and classes present in the data set. These matrix e...
متن کاملUrban Land Use Classes with Fuzzy Membership and Classification Based on Integration of Remote Sensing and Gis
Urban land use classification from remotely sensed images has drawn great attention in the past decades. Most researchers derive land use data from remotely sensed images alone, but the results are not quite satisfying for detecting detailed land use classes in urban areas. Fuzzy urban land use classes proposed here consist of a number of fuzzy memberships that offer direct links to findings fr...
متن کامل